Blog-Layout

المؤشر الحيوي هو أي معلمة بيولوجية (مادة أو مكون) يمكن قياسه من خلال الاختبارات التي يمكن استخدامها كمؤشر للعمليات البيولوجية الطبيعية أو العمليات الممرضة أو الاستجابات الدوائية للتدخل العلاجي.
تتضمن أمثلة العلامات الحيوية ما يلي:
• الفحوصات المخبرية على الدم والأنسجة الأخرى
• الاختبارات الوظيفية
• اختبارات تخطيط القلب
• اختبارات التصوير (التصوير المقطعي المحوسب (CT) ، التصوير بالرنين المغناطيسي (MRI) ، إلخ.)

ما هي الأنواع الرئيسية للمؤشرات الحيوية؟
يمكن تصنيف المؤشرات الحيوية إلى:
• المرقم الحيوي النذير
يحدد المرضى الذين يعانون من مخاطر مختلفة لنتائج محددة (تطور المرض أو البقاء على قيد الحياة). يتم تعريفها على أنها واحدة أو أكثر من الخصائص التي تفصل بين السكان فيما يتعلق بالنتيجة ، بغض النظر عن أنواع العلاجات أو العلاجات.
تعمل هذه المعلمة ، على سبيل المثال ، على الطبيب لفهم تطور المرض أو فعالية الدواء المستخدم. وبالتالي ، من الممكن الحفاظ على العلاج المحدد أو تغييره ، بحيث يمكن تحقيق أفضل النتائج.
• المرمز الحيوي التنبئي
يتنبأ بالنتيجة التفاضلية للعلاج أو العلاج المحدد. يتم تعريفه على أنه خاصية أساسية تصنف المرضى حسب درجة استجابتهم لعلاج معين.
يساهم هذا النوع من التحليل ، على سبيل المثال ، في تحديد مجموعة من الأشخاص الذين من المرجح أن يستفيدوا من علاج معين. إن اكتشاف والتحقق من صحة المزيد من المؤشرات الحيوية من هذا النوع مهم لتحسين فعالية العلاجات للأمراض المختلفة.
• المرمز الحيوي الدوائي
يتم استخدامه لتقييم نشاط الدواء ، بما في ذلك لإثبات كفاءة عنصر نشط جديد. يمكن استخدامه أيضًا لتحسين جدول تسليم الدواء في المراحل الأولى من تطور الدواء (الدراسات المختبرية ، التجارب على الحيوانات والمرحلة الأولى).



ماذا تفعل المؤشرات الحيوية؟
يمكن للعلامة الحيوية أن تؤدي وظائف مختلفة:
• تشخيص مرض - جعل التشخيص أكثر موثوقية وسرعة و / أو أرخص.
• تقييم الخطورة - لتحديد المرضى الذين يعانون من شكل حاد من المرض.
• تقييم المخاطر - لتحديد المرضى الذين قد يكون لديهم نتيجة أفضل ، أو أسوأ ، عند تعرضهم للتدخل.
• التنبؤ بالآثار الدوائية - لتحديد الاستجابة الدوائية للمريض المعرض للدواء (الفعالية ، السمية والحركية الدوائية).
• المراقبة - تقييم الاستجابة للتدخل العلاجي.

المراجع
Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95.
Gosho, M., Nagashima, K. & Sato, Y., 2012. Study Designs and statistical analyses for biomarker research. Sensors (Switzerland), 12(7), pp.8966–8986.
Ray, P. et al., 2010. Statistical evaluation of a biomarker. Anesthesiology, 112(4), pp.1023–1040.
Strimbu, K. & Tavel, J. a, 2011. What are Biomarkers? Curr Opin HIV AIDS, 5(6), pp.463–466.
Sargent, D.J.; Conley, B.A.; Allegra, C.; Collette, L Clinical trial designs for predictive marker validation in cancer treatment trials. J. Clin. Oncol. 2005, 23, 2020–2027.
Chakravarty, A.G.; Rothmann, M.; Sridhara, R. Regulatory issues in use of biomarkers in oncology trials. Stat. Biopharm. Res. 2011, 3, 569–576.
Jenkins, M.; Flynn, A.; Smart, T.; Harbron, C.; Sabin, T.; Ratnayake, J.; Delmar, P.; Herath, A.; Jarvis, P.; Matcham, J.; On behalf of the PSI Biomarker Special Interest Group. A statistician’s perspective on biomarkers in drug development. Pharm. Stat. 2011, 6, 494–507.
Dunstan, R.W. et al., 2011. The use of immunohistochemistry for biomarker assessment–can it compete with other technologies? Toxicologic pathology, 39(6), pp.988–1002.


By Raquel Lima February 12, 2023
Ein Labor, das Polyphenolanalysen durchführt, ist ein Analyselabor, das auf die Messung von Polyphenolen in verschiedenen Proben spezialisiert ist. Was ist Polyphenol? Polyphenole sind eine Gruppe von sekundären Pflanzenstoffen, die in pflanzlichen Lebensmitteln, Getränken und Nahrungsergänzungsmitteln vorkommen. Sie gelten als wichtiger Bestandteil einer gesunden Ernährung und werden oft für ihre potentiellen gesundheitlichen Vorteile untersucht, wie beispielsweise ihre antioxidativen Eigenschaften und ihre Fähigkeit, das Risiko für bestimmte chronische Krankheiten zu reduzieren. Polyphenol-Analyselabor Ein Polyphenol-Analyselabor kann ausgestattet sein mit modernen Analysemethoden wie HPLC (hochdurchsatzflüssigkeitschromatographie), LC-MS (liquid chromatography-mass spectrometry), GC-MS (gas chromatography-mass spectrometry) oder ICP-MS (inductively coupled plasma mass spectrometry), um die Polyphenolgehalte in verschiedenen Proben zu quantifizieren. Die Analysemethoden können je nach Bedarf angepasst werden, um spezifische Polyphenoltypen oder -klasse zu quantifizieren. Es ist wichtig zu beachten, dass die Genauigkeit und Zuverlässigkeit der Polyphenolanalyse von mehreren Faktoren abhängt, einschließlich der Qualität der Analysemethoden und -geräte, der Erfahrung des Analytikers und der Qualität der Proben. Es ist daher wichtig, dass das Labor regelmäßig Überwachung und Kalibrierung durchführt, um sicherzustellen, dass die Ergebnisse konsistent und zuverlässig sind. Kontaktieren Sie uns: info@institut-kurz.com
By Raquel Lima August 6, 2022
CAA- (Cell Antioxidant Activity) laboratory test.
By Raquel Lima October 11, 2021
You swallow a nutraceutical and the concentrations of active molecules in your blood go like this:
By Raquel Lima July 13, 2021
Is it possible today to design a highly performing car/air plane/speed boat without computer-simulating its function on the Race track?
By Raquel Lima July 9, 2021
Many cosmetics claim “precious antioxidant effects” to the consumer. Institut Kurz is the only lab capable to quantitatively measure those antioxidant effects to the consumer without costly clinical trials. Contact us: www.institut-kurz.com info@institut-kurz.com
By Raquel Lima November 8, 2020
The gold standard for function testing of nutraceuticals is in-vivo intervention study on a large number of probands. However, that is costly and needs a lot of time. Before you spend this money and time, try to understand the mode of action of your nutraceutical on a cell level. The better you understand the function on cell level, the less money and time you need to spend on in-vivo testing. Institut Kurz carries out for you all the function testing of your nutraceutical on cell level.
By Raquel Lima October 7, 2020
It is known that a clear relationship exists between the food we eat and our health. Thus, the functional components of food, besides being fundamental to the good and normal functioning of the human body, can also be applied effectively in the treatment and prevention of some diseases. More than 5,000 bioactive components have been identified in plant foods, but there are believed to be more than 25,000, and most are metabolized to different compounds during and after digestion. Considering this huge variety of compounds, it can be assumed that it is the combination of many food compounds consumed from a variety of whole foods that probably brings the greatest health benefits and not just a specific one. Thus, there is still much research required to better understand the role of bioactive dietary compounds and their metabolites in human health. In this sense, in vitro methods can be used to understand and study: the identity and quantity of bioactive components in food and its metabolites. mechanisms of action, absorption, bioavailability, metabolism and biological activity. This allows an assessment of the performance, toxicity, efficacy and side effects of bioactive compounds. In vitro is an expression of Latin which means "in the glass" and refers to the technique of performing a certain procedure in a controlled environment outside a living organism. It can be performed on a wide range of cells, and the biological material that best suits the purpose of the test must be selected. Laboratories preferentially use in vitro tests due to the following advantages: Does not require animals or humans Absence of ethical restrictions Avoid the need to submit animal protocols Avoid/reduce the need for laboratory personnel with experience in handling animals Less security concerns Lower cost Faster The problem with the in vitro study is that it is not a complete representation of the response of a human being to a compound. The human body is much more complex than a simple cell culture, so there is a big difference between an active compound are administrated to the cells and the same compound administered to a human being. It is important to consider the relationship between the compound applied directly to the in vitro system and the identity and concentration of the compound that reaches the target (e.g., tissue, receptor, subcellular component) following human ingestion of the specific ingredient. After a substance is ingested, the metabolic fate of the compound and the amount of the biologically active compound that actually reaches the target site is dependent on a multitude of processes, including absorption, distribution, metabolism, and excretion in what are often complex pathways. In addition, in vitro studies cannot fully predict the influence that the active ingredient will have on organs and systems, or the interaction with others. Knowledge of a dietary ingredient's pathway and in vivo metabolism will allow the most appropriate interpretation of the relevance of compound concentrations used in in vitro experiments to amounts ingested by humans. To clarify all the missing information that cannot be obtained through in vitro assays, in vivo studies still are necessary.
By Raquel Lima September 29, 2020
Transcription inverse - La réaction en chaîne par polymérase quantitative (RT-qPCR) est la technique de référence pour la quantification de l'ARNm. Il permet la détection de transcriptions rares et l'observation de petites variations dans l'expression génique. Dans cette méthode, l'ARN est d'abord transcrit en ADNc (ADN complémentaire) par transcriptase inverse à partir d'ARN total ou d'ARNm (ARN messager). L'ADNc est ensuite utilisé comme matrice pour la réaction qPCR. RT-qPCR peut être effectué dans un: Test en une étape - Combine la transcription inverse et la PCR dans un seul tube et tampon, en utilisant une transcriptase inverse avec une ADN polymérase.
By Raquel Lima September 22, 2020
Reacción en cadena de la polimerasa con transcriptasa inversa (RT-qPCR) es la técnica estándar de oro para la cuantificación de ARNm. Permite la detección de transcripciones raras y la observación de pequeñas variaciones en la expresión génica. En este método, el ARN se transcribe primero en ADNc (ADN complementario) mediante transcriptasa inversa del ARN total o ARNm (ARN mensajero). El ADNc se usa luego como plantilla para la reacción qPCR. RT-qPCR se puede realizar en: - Ensayo en un solo paso : combina la transcripción inversa y la PCR en un solo tubo y tampón, utilizando una transcriptasa inversa junto con una ADN polimerasa.
By Raquel Lima September 17, 2020
Reverse transcription - quantitative polymerase chain reaction (RT-qPCR) is the gold standard technique for mRNA quantification. It allows the detection of rare transcripts and the observation of small variations in gene expression. In this method, RNA is first transcribed into cDNA (complementary DNA) by reverse transcriptase from total RNA or mRNA (messenger RNA). The cDNA is then used as the template for the qPCR reaction. RT-qPCR can be performed in a: - One-step assay - Combines reverse transcription and PCR in a single tube and buffer, using a reverse transcriptase along with a DNA polymerase.
Show More
Share by: